
8 C H A P T E R

Magnetic Forces,
Materials, and
Inductance

W e are now ready to undertake the second half of the magnetic field problem,
that of determining the forces and torques exerted by the magnetic field on
other charges. The electric field causes a force to be exerted on a charge

that may be either stationary or in motion; we will see that the steady magnetic field is
capable of exerting a force only on a moving charge. This result appears reasonable; a
magnetic field may be produced by moving charges and may exert forces on moving
charges; a magnetic field cannot arise from stationary charges and cannot exert any
force on a stationary charge.

This chapter initially considers the forces and torques on current-carrying con-
ductors that may either be of a filamentary nature or possess a finite cross section
with a known current density distribution. The problems associated with the motion
of particles in a vacuum are largely avoided.

With an understanding of the fundamental effects produced by the magnetic
field, we may then consider the varied types of magnetic materials, the analysis
of elementary magnetic circuits, the forces on magnetic materials, and finally, the
important electrical circuit concepts of self-inductance and mutual inductance. ■

8.1 FORCE ON A MOVING CHARGE
In an electric field, the definition of the electric field intensity shows us that the force
on a charged particle is

F = QE (1)
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The force is in the same direction as the electric field intensity (for a positive charge)
and is directly proportional to both E and Q. If the charge is in motion, the force at
any point in its trajectory is then given by (1).

A charged particle in motion in a magnetic field of flux density B is found
experimentally to experience a force whose magnitude is proportional to the product
of the magnitudes of the charge Q, its velocity v, and the flux density B, and to the sine
of the angle between the vectors v and B. The direction of the force is perpendicular
to both v and B and is given by a unit vector in the direction of v × B. The force may
therefore be expressed as

F = Qv × B (2)

A fundamental difference in the effect of the electric and magnetic fields on
charged particles is now apparent, for a force which is always applied in a direc-
tion at right angles to the direction in which the particle is proceeding can never
change the magnitude of the particle velocity. In other words, the acceleration vector
is always normal to the velocity vector. The kinetic energy of the particle remains
unchanged, and it follows that the steady magnetic field is incapable of transfer-
ring energy to the moving charge. The electric field, on the other hand, exerts a
force on the particle which is independent of the direction in which the particle is
progressing and therefore effects an energy transfer between field and particle in
general.

The first two problems at the end of this chapter illustrate the different effects of
electric and magnetic fields on the kinetic energy of a charged particle moving in free
space.

The force on a moving particle arising from combined electric and magnetic
fields is obtained easily by superposition,

F = Q(E + v × B) (3)

This equation is known as the Lorentz force equation, and its solution is required in
determining electron orbits in the magnetron, proton paths in the cyclotron, plasma
characteristics in a magnetohydrodynamic (MHD) generator, or, in general, charged-
particle motion in combined electric and magnetic fields.

D8.1. The point charge Q = 18 nC has a velocity of 5×106 m/s in the direction
aν = 0.60ax +0.75ay +0.30az . Calculate the magnitude of the force exerted on
the charge by the field: (a) B = −3ax + 4ay + 6az mT; (b) E = −3ax + 4ay +
6az kV/m; (c) B and E acting together.

Ans. 660 µN; 140 µN; 670 µN
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8.2 FORCE ON A DIFFERENTIAL
CURRENT ELEMENT

The force on a charged particle moving through a steady magnetic field may be written
as the differential force exerted on a differential element of charge,

dF = dQ v × B (4)

Physically, the differential element of charge consists of a large number of very
small, discrete charges occupying a volume which, although small, is much larger
than the average separation between the charges. The differential force expressed
by (4) is thus merely the sum of the forces on the individual charges. This sum, or
resultant force, is not a force applied to a single object. In an analogous way, we might
consider the differential gravitational force experienced by a small volume taken in
a shower of falling sand. The small volume contains a large number of sand grains,
and the differential force is the sum of the forces on the individual grains within the
small volume.

If our charges are electrons in motion in a conductor, however, we can show
that the force is transferred to the conductor and that the sum of this extremely large
number of extremely small forces is of practical importance. Within the conductor,
electrons are in motion throughout a region of immobile positive ions which form
a crystalline array, giving the conductor its solid properties. A magnetic field which
exerts forces on the electrons tends to cause them to shift position slightly and produces
a small displacement between the centers of “gravity” of the positive and negative
charges. The Coulomb forces between electrons and positive ions, however, tend to
resist such a displacement. Any attempt to move the electrons, therefore, results in
an attractive force between electrons and the positive ions of the crystalline lattice.
The magnetic force is thus transferred to the crystalline lattice, or to the conductor
itself. The Coulomb forces are so much greater than the magnetic forces in good
conductors that the actual displacement of the electrons is almost immeasurable. The
charge separation that does result, however, is disclosed by the presence of a slight
potential difference across the conductor sample in a direction perpendicular to both
the magnetic field and the velocity of the charges. The voltage is known as the Hall
voltage, and the effect itself is called the Hall effect.

Figure 8.1 illustrates the direction of the Hall voltage for both positive and neg-
ative charges in motion. In Figure 8.1a, v is in the −ax direction, v × B is in the ay

direction, and Q is positive, causing FQ to be in the ay direction; thus, the positive
charges move to the right. In Figure 8.1b, v is now in the +ax direction, B is still in
the az direction, v × B is in the −ay direction, and Q is negative; thus, FQ is again in
the ay direction. Hence, the negative charges end up at the right edge. Equal currents
provided by holes and electrons in semiconductors can therefore be differentiated by
their Hall voltages. This is one method of determining whether a given semiconductor
is n-type or p-type.

Devices employ the Hall effect to measure the magnetic flux density and, in some
applications where the current through the device can be made proportional to the
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Figure 8.1 Equal currents directed into the material are provided by positive charges
moving inward in (a) and negative charges moving outward in (b). The two cases can be
distinguished by oppositely directed Hall voltages, as shown.

magnetic field across it, to serve as electronic wattmeters, squaring elements, and so
forth.

Returning to (4), we may therefore say that if we are considering an element
of moving charge in an electron beam, the force is merely the sum of the forces on
the individual electrons in that small volume element, but if we are considering an
element of moving charge within a conductor, the total force is applied to the solid
conductor itself. We will now limit our attention to the forces on current-carrying
conductors.

In Chapter 5 we defined convection current density in terms of the velocity of
the volume charge density,

J = ρνv

The differential element of charge in (4) may also be expressed in terms of volume
charge density,1

dQ = ρνdν

Thus

dF = ρνdν v × B

or

dF = J × B dν (5)

We saw in Chapter 7 that J dν may be interpreted as a differential current element;
that is,

J dν = K dS = I dL

1Remember that dν is a differential volume element and not a differential increase in velocity.
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and thus the Lorentz force equation may be applied to surface current density,

dF = K × B dS (6)

or to a differential current filament,

dF = I dL × B (7)

Integrating (5), (6), or (7) over a volume, a surface which may be either open or
closed (why?), or a closed path, respectively, leads to the integral formulations

F =
∫

vol
J × B dν (8)

F =
∫

S
K × B dS (9)

and

F =
∮

I dL × B = −I
∮

B × dL (10)

One simple result is obtained by applying (7) or (10) to a straight conductor in a
uniform magnetic field,

F = I L × B (11)

The magnitude of the force is given by the familiar equation

F = BIL sin θ (12)

where θ is the angle between the vectors representing the direction of the current flow
and the direction of the magnetic flux density. Equation (11) or (12) applies only to
a portion of the closed circuit, and the remainder of the circuit must be considered in
any practical problem.

EXAMPLE 8.1

As a numerical example of these equations, consider Figure 8.2. We have a square
loop of wire in the z = 0 plane carrying 2 mA in the field of an infinite filament on
the y axis, as shown. We desire the total force on the loop.

Solution. The field produced in the plane of the loop by the straight filament is

H = I

2πx
az = 15

2πx
az A/m

Therefore,

B = µ0H = 4π × 10−7H = 3 × 10−6

x
az T
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Figure 8.2 A square loop of wire in the xy plane carrying 2 mA
is subjected to a nonuniform B field.

We use the integral form (10),

F = −I
∮

B × dL

Let us assume a rigid loop so that the total force is the sum of the forces on the four
sides. Beginning with the left side:

F = −2 × 10−3 × 3 × 10−6

[∫ 3

x=1

az

x
× dx ax +

∫ 2

y=0

az

3
× dy ay

+
∫ 1

x=3

az

x
× dx ax +

∫ 0

y=2

az

1
× dy ay

]

= −6 × 10−9

[
ln x
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3

1

ay + 1

3
y

∣∣∣∣
2

0

(−ax ) + ln x

∣∣∣∣
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3

ay + y
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0
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(−ax )

]

= −6 × 10−9

[
(ln 3)ay − 2

3
ax +

(
ln

1

3

)
ay + 2ax

]

= −8ax nN

Thus, the net force on the loop is in the −ax direction.

D8.2. The field B = −2ax + 3ay + 4az mT is present in free space. Find the
vector force exerted on a straight wire carrying 12 A in the aAB direction, given
A(1, 1, 1) and: (a) B(2, 1, 1); (b) B(3, 5, 6).

Ans. −48ay + 36az mN; 12ax − 216ay + 168az mN
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D8.3. The semiconductor sample shown in Figure 8.1 is n-type silicon, hav-
ing a rectangular cross section of 0.9 mm by 1.1 cm and a length of 1.3 cm.
Assume the electron and hole mobilities are 0.13 and 0.03 m2/V · s, respectively,
at the operating temperature. Let B = 0.07 T and the electric field intensity in
the direction of the current flow be 800 V/m. Find the magnitude of: (a) the
voltage across the sample length; (b) the drift velocity; (c) the transverse force
per coulomb of moving charge caused by B; (d) the transverse electric field
intensity; (e) the Hall voltage.

Ans. 10.40 V; 104.0 m/s; 7.28 N/C; 7.28 V/m; 80.1 mV

8.3 FORCE BETWEEN DIFFERENTIAL
CURRENT ELEMENTS

The concept of the magnetic field was introduced to break into two parts the problem
of finding the interaction of one current distribution on a second current distribution.
It is possible to express the force on one current element directly in terms of a
second current element without finding the magnetic field. Because we claimed that
the magnetic-field concept simplifies our work, it then behooves us to show that
avoidance of this intermediate step leads to more complicated expressions.

The magnetic field at point 2 due to a current element at point 1 was found to be

dH2 = I1dL1 × aR12

4πR2
12

Now, the differential force on a differential current element is

dF = I dL × B

and we apply this to our problem by letting B be dB2 (the differential flux density at
point 2 caused by current element 1), by identifying I dL as I2dL2, and by symbolizing
the differential amount of our differential force on element 2 as d(dF2):

d(dF2) = I2dL2 × dB2

Because dB2 = µ0dH2, we obtain the force between two differential current
elements,

d(dF2) = µ0
I1 I2

4πR2
12

dL2 × (dL1 × aR12) (13)

EXAMPLE 8.2

As an example that illustrates the use (and misuse) of these results, consider the
two differential current elements shown in Figure 8.3. We seek the differential force
on dL2.
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Figure 8.3 Given P1(5, 2, 1), P2(1, 8, 5),
I 1 dL1 = −3ay A · m, and I 2 dL2 = −4az A · m,
the force on I 2 dL2 is 8.56 nN in the ay direction.

Solution. We have I1dL1 = −3ayA · m at P1(5, 2, 1), and I2dL2 = −4azA · m at
P2(1, 8, 5). Thus, R12 = −4ax +6ay +4az , and we may substitute these data into (13),

d(dF2) = 4π10−7

4π

(−4az) × [(−3ay) × (−4ax + 6ay + 4az)]

(16 + 36 + 16)1.5

= 8.56ay nN

Many chapters ago, when we discussed the force exerted by one point charge on
another point charge, we found that the force on the first charge was the negative of
that on the second. That is, the total force on the system was zero. This is not the case
with the differential current elements, and d(dF1) = −12.84az nN in Example 8.2.
The reason for this different behavior lies with the nonphysical nature of the current
element. Whereas point charges may be approximated quite well by small charges,
the continuity of current demands that a complete circuit be considered. This we shall
now do.

The total force between two filamentary circuits is obtained by integrating twice:

F2 = µ0
I1 I2

4π

∮ [
dL2 ×

∮
dL1 × aR12

R2
12

]

= µ0
I1 I2

4π

∮ [∮
aR12 × dL1

R2
12

]
× dL2

(14)

Equation (14) is quite formidable, but the familiarity gained in Chapter 7 with
the magnetic field should enable us to recognize the inner integral as the integral
necessary to find the magnetic field at point 2 due to the current element at point 1.

Although we shall only give the result, it is not very difficult to use (14) to
find the force of repulsion between two infinitely long, straight, parallel, filamentary
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Figure 8.4 Two infinite parallel
filaments with separation d and equal
but opposite currents I experience a
repulsive force of µ0 I 2/(2πd ) N/m.

conductors with separation d, and carrying equal but opposite currents I , as shown
in Figure 8.4. The integrations are simple, and most errors are made in determining
suitable expressions for aR12, dL1, and dL2. However, since the magnetic field in-
tensity at either wire caused by the other is already known to be I/(2πd), it is readily
apparent that the answer is a force of µ0 I 2/(2πd) newtons per meter length.

D8.4. Two differential current elements, I1�L1 = 3 × 10−6ay A · m at
P1(1, 0, 0) and I2�L2 = 3×10−6(−0.5ax +0.4ay +0.3az) A · m at P2(2, 2, 2),
are located in free space. Find the vector force exerted on: (a) I2�L2 by I1�L1;
(b) I1�L1 by I2�L2.

Ans. (−1.333ax + 0.333ay − 2.67az)10−20 N; (4.67ax + 0.667az)10−20 N

8.4 FORCE AND TORQUE
ON A CLOSED CIRCUIT

We have already obtained general expressions for the forces exerted on current sys-
tems. One special case is easily disposed of, for if we take our relationship for the
force on a filamentary closed circuit, as given by Eq. (10), Section 8.2,

F = −I
∮

B × dL

and assume a uniform magnetic flux density, then B may be removed from the integral:

F = −I B ×
∮

dL

However, we discovered during our investigation of closed line integrals in an elec-
trostatic potential field that

∮
dL = 0, and therefore the force on a closed filamentary

circuit in a uniform magnetic field is zero.
If the field is not uniform, the total force need not be zero.
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Figure 8.5 (a) Given a lever arm R extending from an origin O to a point P where
force F is applied, the torque about O is T = R × F. (b) If F2 = −F1, then the torque
T = R21 × F1 is independent of the choice of origin for R1 and R2.

This result for uniform fields does not have to be restricted to filamentary circuits
only. The circuit may contain surface currents or volume current density as well. If
the total current is divided into filaments, the force on each one is zero, as we have
shown, and the total force is again zero. Therefore, any real closed circuit carrying
direct currents experiences a total vector force of zero in a uniform magnetic field.

Although the force is zero, the torque is generally not equal to zero.
In defining the torque, or moment, of a force, it is necessary to consider both an

origin at or about which the torque is to be calculated, and the point at which the
force is applied. In Figure 8.5a, we apply a force F at point P , and we establish an
origin at O with a rigid lever arm R extending from O to P. The torque about point
O is a vector whose magnitude is the product of the magnitudes of R, of F, and of
the sine of the angle between these two vectors. The direction of the vector torque T
is normal to both the force F and the lever arm R and is in the direction of progress
of a right-handed screw as the lever arm is rotated into the force vector through the
smaller angle. The torque is expressible as a cross product,

T = R × F

Now assume that two forces, F1 at P1 and F2 at P2, having lever arms R1 and
R2 extending from a common origin O , as shown in Figure 8.5b, are applied to an
object of fixed shape and that the object does not undergo any translation. Then the
torque about the origin is

T = R1 × F1 + R2 × F2

where

F1 + F2 = 0
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and therefore

T = (R1 − R2) × F1 = R21 × F1

The vector R21 = R1 − R2 joins the point of application of F2 to that of F1 and is
independent of the choice of origin for the two vectors R1 and R2. Therefore, the
torque is also independent of the choice of origin, provided that the total force is zero.
This may be extended to any number of forces.

Consider the application of a vertically upward force at the end of a horizontal
crank handle on an elderly automobile. This cannot be the only applied force, for if it
were, the entire handle would be accelerated in an upward direction. A second force,
equal in magnitude to that exerted at the end of the handle, is applied in a downward
direction by the bearing surface at the axis of rotation. For a 40-N force on a crank
handle 0.3 m in length, the torque is 12 N · m. This figure is obtained regardless of
whether the origin is considered to be on the axis of rotation (leading to 12 N · m plus
0 N · m), at the midpoint of the handle (leading to 6 N · m plus 6 N · m), or at some
point not even on the handle or an extension of the handle.

We may therefore choose the most convenient origin, and this is usually on the
axis of rotation and in the plane containing the applied forces if the several forces
are coplanar.

With this introduction to the concept of torque, let us now consider the torque
on a differential current loop in a magnetic field B. The loop lies in the xy plane
(Figure 8.6); the sides of the loop are parallel to the x and y axes and are of length
dx and dy. The value of the magnetic field at the center of the loop is taken as B0.

Figure 8.6 A differential current loop in a magnetic field B.
The torque on the loop is d T = I (dx dyaz) × B0 = I dS × B.
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Since the loop is of differential size, the value of B at all points on the loop may be
taken as B0. (Why was this not possible in the discussion of curl and divergence?)
The total force on the loop is therefore zero, and we are free to choose the origin for
the torque at the center of the loop.

The vector force on side 1 is

dF1 = I dx ax × B0

or

dF1 = I dx(B0yaz − B0zay)

For this side of the loop the lever arm R extends from the origin to the midpoint
of the side, R1 = − 1

2 dy ay , and the contribution to the total torque is

dT1 = R1 × dF1

= − 1
2 dy ay × I dx(B0yaz − B0zay)

= − 1
2 dx dy I B0yax

The torque contribution on side 3 is found to be the same,

dT3 = R3 × dF3 = 1
2 dy ay × (−I dx ax × B0)

= − 1
2 dx dy IB0yax = dT1

and

dT1 + dT3 = −dx dy IB0yax

Evaluating the torque on sides 2 and 4, we find

dT2 + dT4 = dx dy IB0x ay

and the total torque is then

dT = I dx dy(B0x ay − B0yax )

The quantity within the parentheses may be represented by a cross product,

dT = I dx dy(az × B0)

or

dT = I dS × B (15)

where dS is the vector area of the differential current loop and the subscript on B0

has been dropped.
We now define the product of the loop current and the vector area of the loop as

the differential magnetic dipole moment dm, with units of A · m2. Thus

dm = I dS (16)
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and

dT = dm × B (17)

If we extend the results we obtained in Section 4.7 for the differential electric
dipole by determining the torque produced on it by an electric field, we see a similar
result,

dT = dp × E

Equations (15) and (17) are general results that hold for differential loops of any
shape, not just rectangular ones. The torque on a circular or triangular loop is also
given in terms of the vector surface or the moment by (15) or (17).

Because we selected a differential current loop so that we might assume B was
constant throughout it, it follows that the torque on a planar loop of any size or shape
in a uniform magnetic field is given by the same expression,

T = I S × B = m × B (18)

We should note that the torque on the current loop always tends to turn the loop
so as to align the magnetic field produced by the loop with the applied magnetic field
that is causing the torque. This is perhaps the easiest way to determine the direction
of the torque.

EXAMPLE 8.3

To illustrate some force and torque calculations, consider the rectangular loop shown
in Figure 8.7. Calculate the torque by using T = I S × B.

Solution. The loop has dimensions of 1 m by 2 m and lies in the uniform field
B0 = −0.6ay + 0.8azT. The loop current is 4 mA, a value that is sufficiently small to
avoid causing any magnetic field that might affect B0.

We have

T = 4 × 10−3[(1)(2)az] × (−0.6ay + 0.8az) = 4.8ax mN · m

Thus, the loop tends to rotate about an axis parallel to the positive x axis. The small
magnetic field produced by the 4 mA loop current tends to line up with B0.

EXAMPLE 8.4

Now let us find the torque once more, this time by calculating the total force and
torque contribution for each side.

Solution. On side 1 we have

F1 = I L1 × B0 = 4 × 10−3(1ax ) × (−0.6ay + 0.8az)

= −3.2ay − 2.4az mN
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Figure 8.7 A rectangular loop is located in a uniform
magnetic flux density B0.

On side 3 we obtain the negative of this result,

F3 = 3.2ay + 2.4az mN

Next, we attack side 2:

F2 = I L2 × B0 = 4 × 10−3(2ay) × (−0.6ay + 0.8az)

= 6.4ax mN

with side 4 again providing the negative of this result,

F4 = −6.4ax mN

Because these forces are distributed uniformly along each of the sides, we treat
each force as if it were applied at the center of the side. The origin for the torque may
be established anywhere since the sum of the forces is zero, and we choose the center
of the loop. Thus,

T = T1 + T2 + T3 + T4 = R1 × F1 + R2 × F2 + R3 × F3 + R4 × F4

= (−1ay) × (−3.2ay − 2.4az) + (0.5ax ) × (6.4ax )

+ (1ay) × (3.2ay + 2.4az) + (−0.5ax ) × (−6.4ax )

= 2.4ax + 2.4ax = 4.8ax mN · m

Crossing the loop moment with the magnetic flux density is certainly easier.
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D8.5. A conducting filamentary triangle joins points A(3, 1, 1), B(5, 4, 2),
and C(1, 2, 4). The segment AB carries a current of 0.2 A in the aAB direction.
There is present a magnetic field B = 0.2ax − 0.1ay + 0.3az T. Find: (a) the
force on segment BC ; (b) the force on the triangular loop; (c) the torque on the
loop about an origin at A; (d) the torque on the loop about an origin at C.

Ans. −0.08ax + 0.32ay + 0.16az N; 0; −0.16ax − 0.08ay + 0.08az N · m; −0.16ax −
0.08ay + 0.08az N · m

8.5 THE NATURE OF MAGNETIC MATERIALS
We are now in a position to combine our knowledge of the action of a magnetic field
on a current loop with a simple model of an atom and obtain some appreciation of
the difference in behavior of various types of materials in magnetic fields.

Although accurate quantitative results can only be predicted through the use
of quantum theory, the simple atomic model, which assumes that there is a central
positive nucleus surrounded by electrons in various circular orbits, yields reasonable
quantitative results and provides a satisfactory qualitative theory. An electron in an
orbit is analogous to a small current loop (in which the current is directed oppositely
to the direction of electron travel) and, as such, experiences a torque in an external
magnetic field, the torque tending to align the magnetic field produced by the orbiting
electron with the external magnetic field. If there were no other magnetic moments to
consider, we would then conclude that all the orbiting electrons in the material would
shift in such a way as to add their magnetic fields to the applied field, and thus that
the resultant magnetic field at any point in the material would be greater than it would
be at that point if the material were not present.

A second moment, however, is attributed to electron spin. Although it is tempting
to model this phenomenon by considering the electron as spinning about its own axis
and thus generating a magnetic dipole moment, satisfactory quantitative results are
not obtained from such a theory. Instead, it is necessary to digest the mathematics of
relativistic quantum theory to show that an electron may have a spin magnetic moment
of about ±9 × 10−24 A · m2; the plus and minus signs indicate that alignment aiding
or opposing an external magnetic field is possible. In an atom with many electrons
present, only the spins of those electrons in shells which are not completely filled will
contribute to a magnetic moment for the atom.

A third contribution to the moment of an atom is caused by nuclear spin. Although
this factor provides a negligible effect on the overall magnetic properties of materials,
it is the basis of the nuclear magnetic resonance imaging (MRI) procedure provided
by many of the larger hospitals.

Thus each atom contains many different component moments, and their com-
bination determines the magnetic characteristics of the material and provides its
general magnetic classification. We describe briefly six different types of material:
diamagnetic, paramagnetic, ferromagnetic, antiferromagnetic, ferrimagnetic, and
superparamagnetic.
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Let us first consider atoms in which the small magnetic fields produced by the
motion of the electrons in their orbits and those produced by the electron spin combine
to produce a net field of zero. Note that we are considering here the fields produced
by the electron motion itself in the absence of any external magnetic field; we might
also describe this material as one in which the permanent magnetic moment m0 of
each atom is zero. Such a material is termed diamagnetic. It would seem, therefore,
that an external magnetic field would produce no torque on the atom, no realignment
of the dipole fields, and consequently an internal magnetic field that is the same as the
applied field. With an error that only amounts to about one part in a hundred thousand,
this is correct.

Let us select an orbiting electron whose moment m is in the same direction as
the applied field B0 (Figure 8.8). The magnetic field produces an outward force on
the orbiting electron. Since the orbital radius is quantized and cannot change, the
inward Coulomb force of attraction is also unchanged. The force unbalance created
by the outward magnetic force must therefore be compensated for by a reduced orbital
velocity. Hence, the orbital moment decreases, and a smaller internal field results.

If we had selected an atom for which m and B0 were opposed, the magnetic force
would be inward, the velocity would increase, the orbital moment would increase, and
greater cancellation of B0 would occur. Again a smaller internal field would result.

Metallic bismuth shows a greater diamagnetic effect than most other diamag-
netic materials, among which are hydrogen, helium, the other “inert” gases, sodium
chloride, copper, gold, silicon, germanium, graphite, and sulfur. We should also re-
alize that the diamagnetic effect is present in all materials, because it arises from an
interaction of the external magnetic field with every orbiting electron; however, it is
overshadowed by other effects in the materials we shall consider next.

Now consider an atom in which the effects of the electron spin and orbital motion
do not quite cancel. The atom as a whole has a small magnetic moment, but the random
orientation of the atoms in a larger sample produces an average magnetic moment
of zero. The material shows no magnetic effects in the absence of an external field.

Figure 8.8 An orbiting electron is shown having
a magnetic moment m in the same direction as an
applied field B0.
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When an external field is applied, however, there is a small torque on each atomic
moment, and these moments tend to become aligned with the external field. This
alignment acts to increase the value of B within the material over the external value.
However, the diamagnetic effect is still operating on the orbiting electrons and may
counteract the increase. If the net result is a decrease in B, the material is still called
diamagnetic. However, if there is an increase in B, the material is termed paramag-
netic. Potassium, oxygen, tungsten, and the rare earth elements and many of their salts,
such as erbium chloride, neodymium oxide, and yttrium oxide, one of the materials
used in masers, are examples of paramagnetic substances.

The remaining four classes of material, ferromagnetic, antiferromagnetic, fer-
rimagnetic, and superparamagnetic, all have strong atomic moments. Moreover, the
interaction of adjacent atoms causes an alignment of the magnetic moments of the
atoms in either an aiding or exactly opposing manner.

In ferromagnetic materials, each atom has a relatively large dipole moment,
caused primarily by uncompensated electron spin moments. Interatomic forces cause
these moments to line up in a parallel fashion over regions containing a large number
of atoms. These regions are called domains, and they may have a variety of shapes
and sizes ranging from one micrometer to several centimeters, depending on the size,
shape, material, and magnetic history of the sample. Virgin ferromagnetic materials
will have domains which each have a strong magnetic moment; the domain moments,
however, vary in direction from domain to domain. The overall effect is therefore one
of cancellation, and the material as a whole has no magnetic moment. Upon application
of an external magnetic field, however, those domains which have moments in the
direction of the applied field increase their size at the expense of their neighbors,
and the internal magnetic field increases greatly over that of the external field alone.
When the external field is removed, a completely random domain alignment is not
usually attained, and a residual, or remnant, dipole field remains in the macroscopic
structure. The fact that the magnetic moment of the material is different after the
field has been removed, or that the magnetic state of the material is a function of its
magnetic history, is called hysteresis, a subject which will be discussed again when
magnetic circuits are studied in Section 8.8.

Ferromagnetic materials are not isotropic in single crystals, and we will therefore
limit our discussion to polycrystalline materials, except for mentioning that one of the
characteristics of anisotropic magnetic materials is magnetostriction, or the change
in dimensions of the crystal when a magnetic field is impressed on it.

The only elements that are ferromagnetic at room temperature are iron, nickel,
and cobalt, and they lose all their ferromagnetic characteristics above a temperature
called the Curie temperature, which is 1043 K (770◦C) for iron. Some alloys of these
metals with each other and with other metals are also ferromagnetic, as for example
alnico, an aluminum-nickel-cobalt alloy with a small amount of copper. At lower
temperatures some of the rare earth elements, such as gadolinium and dysprosium,
are ferromagnetic. It is also interesting that some alloys of nonferromagnetic metals
are ferromagnetic, such as bismuth-manganese and copper-manganese-tin.

In antiferromagnetic materials, the forces between adjacent atoms cause the
atomic moments to line up in an antiparallel fashion. The net magnetic moment is
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Table 8.1 Characteristics of magnetic materials

Classification Magnetic Moments B Values Comments

Diamagnetic morb + mspin = 0 Bint < Bappl Bint
.= Bappl

Paramagnetic morb + mspin = small Bint > Bappl Bint
.= Bappl

Ferromagnetic |mspin| � |morb| Bint � Bappl Domains

Antiferromagnetic |mspin| � |morb| Bint
.= Bappl Adjacent moments oppose

Ferrimagnetic |mspin| � |morb| Bint > Bappl Unequal adjacent moments
oppose; low σ

Superparamagnetic |mspin| � |morb| Bint > Bappl Nonmagnetic matrix;
recording tapes

zero, and antiferromagnetic materials are affected only slightly by the presence of
an external magnetic field. This effect was first discovered in manganese oxide, but
several hundred antiferromagnetic materials have been identified since then. Many
oxides, sulfides, and chlorides are included, such as nickel oxide (NiO), ferrous sulfide
(FeS), and cobalt chloride (CoCl2). Antiferromagnetism is only present at relatively
low temperatures, often well below room temperature. The effect is not of engineering
importance at present.

The ferrimagnetic substances also show an antiparallel alignment of adjacent
atomic moments, but the moments are not equal. A large response to an exter-
nal magnetic field therefore occurs, although not as large as that in ferromagnetic
materials. The most important group of ferrimagnetic materials are the ferrites, in
which the conductivity is low, several orders of magnitude less than that of semi-
conductors. The fact that these substances have greater resistance than the ferro-
magnetic materials results in much smaller induced currents in the material when
alternating fields are applied, as for example in transformer cores that operate at
the higher frequencies. The reduced currents (eddy currents) lead to lower ohmic
losses in the transformer core. The iron oxide magnetite (Fe3O4), a nickel-zinc fer-
rite (Ni1/2Zn1/2Fe2O4), and a nickel ferrite (NiFe2O4) are examples of this class of
materials. Ferrimagnetism also disappears above the Curie temperature.

Superparamagnetic materials are composed of an assembly of ferromagnetic
particles in a nonferromagnetic matrix. Although domains exist within the individual
particles, the domain walls cannot penetrate the intervening matrix material to the
adjacent particle. An important example is the magnetic tape used in audiotape or
videotape recorders.

Table 8.1 summarizes the characteristics of the six types of magnetic materials
we have discussed.

8.6 MAGNETIZATION AND PERMEABILITY
To place our description of magnetic materials on a more quantitative basis, we will
now devote a page or so to showing how the magnetic dipoles act as a distributed
source for the magnetic field. Our result will be an equation that looks very much like
Ampère’s circuital law,

∮
H · dL = I . The current, however, will be the movement of
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bound charges (orbital electrons, electron spin, and nuclear spin), and the field, which
has the dimensions of H, will be called the magnetization M. The current produced
by the bound charges is called a bound current or Amperian current.

Let us begin by defining the magnetization M in terms of the magnetic dipole
moment m. The bound current Ib circulates about a path enclosing a differential area
dS, establishing a dipole moment (A · m2),

m = IbdS

If there are n magnetic dipoles per unit volume and we consider a volume �ν, then
the total magnetic dipole moment is found by the vector sum

mtotal =
n�ν∑
i=1

mi (19)

Each of the mi may be different. Next, we define the magnetization M as the magnetic
dipole moment per unit volume,

M = lim
�ν→0

1

�ν

n�ν∑
i=1

mi

and see that its units must be the same as for H, amperes per meter.
Now let us consider the effect of some alignment of the magnetic dipoles as

the result of the application of a magnetic field. We shall investigate this alignment
along a closed path, a short portion of which is shown in Figure 8.9. The figure shows
several magnetic moments m that make an angle θ with the element of path dL; each
moment consists of a bound current Ib circulating about an area dS. We are therefore
considering a small volume, dS cos θdL , or dS · dL, within which there are ndS · dL
magnetic dipoles. In changing from a random orientation to this partial alignment,
the bound current crossing the surface enclosed by the path (to our left as we travel in
the aL direction in Figure 8.9) has increased by Ib for each of the ndS · dL dipoles.
Thus the differential change in the net bound current IB over the segment dL will be

d IB = nIbdS · dL = M · dL (20)

and within an entire closed contour,

IB =
∮

M · dL (21)

Figure 8.9 A section dL of a closed path along which magnetic dipoles have been
partially aligned by some external magnetic field. The alignment has caused the bound
current crossing the surface defined by the closed path to increase by nI bdS · dL A.
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Equation (21) merely says that if we go around a closed path and find dipole moments
going our way more often than not, there will be a corresponding current composed
of, for example, orbiting electrons crossing the interior surface.

This last expression has some resemblance to Ampère’s circuital law, and we
may now generalize the relationship between B and H so that it applies to media
other than free space. Our present discussion is based on the forces and torques on
differential current loops in a B field, and we therefore take B as our fundamental
quantity and seek an improved definition of H. We thus write Ampère’s circuital law
in terms of the total current, bound plus free,

∮
B
µ0

· dL = IT (22)

where

IT = IB + I

and I is the total free current enclosed by the closed path. Note that the free current
appears without subscript since it is the most important type of current and will be
the only current appearing in Maxwell’s equations.

Combining these last three equations, we obtain an expression for the free current
enclosed,

I = IT − IB =
∮ (

B
µ0

− M
)

· dL (23)

We may now define H in terms of B and M,

H = B
µ0

− M (24)

and we see that B = µ0H in free space where the magnetization is zero. This rela-
tionship is usually written in a form that avoids fractions and minus signs:

B = µ0(H + M) (25)

We may now use our newly defined H field in (23),

I =
∮

H · dL (26)

obtaining Ampère’s circuital law in terms of the free currents.
Using the several current densities, we have

IB =
∫

S
JB · dS

IT =
∫

S
JT · dS

I =
∫

S
J · dS



250 ENGINEERING ELECTROMAGNETICS

With the help of Stokes’ theorem, we may therefore transform (21), (26), and (22)
into the equivalent curl relationships:

∇ × M = JB

∇ × B
µ0

= JT

∇ × H = J (27)

We will emphasize only (26) and (27), the two expressions involving the free
charge, in the work that follows.

The relationship between B, H, and M expressed by (25) may be simplified for
linear isotropic media where a magnetic susceptibility χm can be defined:

M = χmH (28)

Thus we have

B = µ0(H + χmH)

= µ0µr H

where

µr = 1 + χm (29)

is defined as the relative permeability µr . We next define the permeability µ:

µ = µ0µr (30)

and this enables us to write the simple relationship between B and H,

B = µH (31)

EXAMPLE 8.5

Given a ferrite material that we shall specify to be operating in a linear mode with
B = 0.05 T, let us assume µr = 50, and calculate values for χm , M, and H.

Solution. Because µr = 1 + χm , we have

χm = µr − 1 = 49

Also,

B = µrµ0 H

and

H = 0.05

50 × 4π × 10−7
= 796 A/m
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The magnetization is M = χm H, or 39, 000 A/m. The alternate ways of relating B
and H are, first,

B = µ0(H + M)

or

0.05 = 4π × 10−7(796 + 39, 000)

showing that Amperian currents produce 49 times the magnetic field intensity that
the free charges do; and second,

B = µrµ0 H

or

0.05 = 50 × 4π × 10−7 × 796

where we use a relative permeability of 50 and let this quantity account completely
for the notion of the bound charges. We shall emphasize the latter interpretation in
the chapters that follow.

The first two laws that we investigated for magnetic fields were the Biot-Savart
law and Ampère’s circuital law. Both were restricted to free space in their application.
We may now extend their use to any homogeneous, linear, isotropic magnetic material
that may be described in terms of a relative permeability µr .

Just as we found for anisotropic dielectric materials, the permeability of an
anisotropic magnetic material must be given as a 3 × 3 matrix, and B and H are
both 3 × 1 matrices. We have

Bx = µxx Hx + µxy Hy + µxz Hz

By = µyx Hx + µyy Hy + µyz Hz

Bz = µzx Hx + µzy Hy + µzz Hz

For anisotropic materials, then, B = µH is a matrix equation; however, B =
µ0(H + M) remains valid, although B, H, and M are no longer parallel in general.
The most common anisotropic magnetic material is a single ferromagnetic crystal,
although thin magnetic films also exhibit anisotropy. Most applications of ferromag-
netic materials, however, involve polycrystalline arrays that are much easier to make.

Our definitions of susceptibility and permeability also depend on the assumption
of linearity. Unfortunately, this is true only in the less interesting paramagnetic and
diamagnetic materials for which the relative permeability rarely differs from unity
by more than one part in a thousand. Some typical values of the susceptibility for
diamagnetic materials are hydrogen, −2 × 10−5; copper, −0.9 × 10−5; germanium,
−0.8 × 10−5; silicon, −0.3 × 10−5; and graphite,−12 × 10−5. Several representative
paramagnetic susceptibilities are oxygen, 2×10−6; tungsten, 6.8×10−5; ferric oxide
(Fe2O3), 1.4 × 10−3; and yttrium oxide (Y2O3), 0.53 × 10−6. If we simply take the
ratio of B to µ0 H as the relative permeability of a ferromagnetic material, typical
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values of µr would range from 10 to 100, 000. Diamagnetic, paramagnetic, and
antiferromagnetic materials are commonly said to be nonmagnetic.

D8.6. Find the magnetization in a magnetic material where: (a) µ = 1.8 ×
10−5 H/m and H = 120 A/m; (b) µr = 22, there are 8.3 × 1028 atoms/m3, and
each atom has a dipole moment of 4.5 × 10−27 A · m2; (c) B = 300 µT and
χm = 15.

Ans. 1599 A/m; 374 A/m; 224 A/m

D8.7. The magnetization in a magnetic material for which χm = 8 is given in
a certain region as 150z2ax A/m. At z = 4 cm, find the magnitude of: (a) JT ;
(b) J; (c) JB .

Ans. 13.5 A/m2; 1.5 A/m2; 12 A/m2

8.7 MAGNETIC BOUNDARY CONDITIONS
We should have no difficulty in arriving at the proper boundary conditions to apply to
B, H, and M at the interface between two different magnetic materials, for we have
solved similar problems for both conducting materials and dielectrics. We need no
new techniques.

Figure 8.10 shows a boundary between two isotropic homogeneous linear materi-
als with permeabilities µ1 and µ2. The boundary condition on the normal components

Figure 8.10 A gaussian surface and a closed path are
constructed at the boundary between media 1 and 2, having
permeabilities of µ1 and µ2, respectively. From this we determine the
boundary conditions BN1 = BN2 and Ht1 − Ht2 = K , the component
of the surface current density directed into the page.
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is determined by allowing the surface to cut a small cylindrical gaussian surface.
Applying Gauss’s law for the magnetic field from Section 7.5,∮

S
B · dS = 0

we find that

BN1�S − BN2�S = 0

or

BN2 = BN1 (32)

Thus

HN2 = µ1

µ2
HN1 (33)

The normal component of B is continuous, but the normal component of H is discon-
tinuous by the ratio µ1/µ2.

The relationship between the normal components of M, of course, is fixed once
the relationship between the normal components of H is known. For linear magnetic
materials, the result is written simply as

MN2 = χm2
µ1

µ2
HN1 = χm2µ1

χm1µ2
MN1 (34)

Next, Ampère’s circuital law ∮
H · dL = I

is applied about a small closed path in a plane normal to the boundary surface, as
shown to the right in Figure 8.10. Taking a clockwise trip around the path, we find
that

Ht1�L − Ht2�L = K�L

where we assume that the boundary may carry a surface current K whose component
normal to the plane of the closed path is K. Thus

Ht1 − Ht2 = K (35)

The directions are specified more exactly by using the cross product to identify the
tangential components,

(H1 − H2) × aN12 = K

where aN12 is the unit normal at the boundary directed from region 1 to region 2. An
equivalent formulation in terms of the vector tangential components may be more
convenient for H:

Ht1 − Ht2 = aN12 × K
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For tangential B, we have

Bt1

µ1
− Bt2

µ2
= K (36)

The boundary condition on the tangential component of the magnetization for linear
materials is therefore

Mt2 = χm2

χm1
Mt1 − χm2 K (37)

The last three boundary conditions on the tangential components are much sim-
pler, of course, if the surface current density is zero. This is a free current density,
and it must be zero if neither material is a conductor.

EXAMPLE 8.6

To illustrate these relationships with an example, let us assume that µ = µ1 = 4 µH/m
in region 1 where z > 0, whereas µ2 = 7 µH/m in region 2 wherever z < 0. Moreover,
let K = 80ax A/m on the surface z = 0. We establish a field, B1 = 2ax − 3ay +
az mT, in region 1 and seek the value of B2.

Solution. The normal component of B1 is

BN1 = (B1 · aN12)aN12 = [(2ax − 3ay + az) · (−az)](−az) = az mT

Thus,

BN2 = BN1 = az mT

We next determine the tangential components:

Bt1 = B1 − BN1 = 2ax − 3ay mT

and

Ht1 = Bt1

µ1
= (2ax − 3ay)10−3

4 × 10−6
= 500ax − 750ay A/m

Thus,

Ht2 = Ht1 − aN12 × K = 500ax − 750ay − (−az) × 80ax

= 500ax − 750ay + 80ay = 500ax − 670ay A/m

and

Bt2 = µ2Ht2 = 7 × 10−6(500ax − 670ay) = 3.5ax − 4.69ay mT

Therefore,

B2 = BN2 + Bt2 = 3.5ax − 4.69ay + az mT
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D8.8. Let the permittivity be 5 µH/m in region A where x < 0, and 20 µH/m
in region B where x > 0. If there is a surface current density K = 150ay −
200az A/m at x = 0, and if HA = 300ax − 400ay + 500az A/m, find: (a) |Ht A|;
(b) |HN A|; (c) |Ht B |; (d) |HN B |.

Ans. 640 A/m; 300 A/m; 695 A/m; 75 A/m

8.8 THE MAGNETIC CIRCUIT
In this section, we digress briefly to discuss the fundamental techniques involved in
solving a class of magnetic problems known as magnetic circuits. As we will see
shortly, the name arises from the great similarity to the dc-resistive-circuit analysis
with which it is assumed we are all familiar. The only important difference lies in the
nonlinear nature of the ferromagnetic portions of the magnetic circuit; the methods
which must be adopted are similar to those required in nonlinear electric circuits which
contain diodes, thermistors, incandescent filaments, and other nonlinear elements.

As a convenient starting point, let us identify those field equations on which
resistive circuit analysis is based. At the same time we will point out or derive the
analogous equations for the magnetic circuit. We begin with the electrostatic potential
and its relationship to electric field intensity,

E = −∇V (38a)

The scalar magnetic potential has already been defined, and its analogous relation to
the magnetic field intensity is

H = −∇Vm (38b)

In dealing with magnetic circuits, it is convenient to call Vm the magnetomotive force,
or mmf, and we shall acknowledge the analogy to the electromotive force, or emf,
by doing so. The units of the mmf are, of course, amperes, but it is customary to
recognize that coils with many turns are often employed by using the term “ampere-
turns.” Remember that no current may flow in any region in which Vm is defined.

The electric potential difference between points A and B may be written as

VAB =
∫ B

A
E · dL (39a)

and the corresponding relationship between the mmf and the magnetic field intensity,

Vm AB =
∫ B

A
H · dL (39b)

was developed in Chapter 7, where we learned that the path selected must not cross
the chosen barrier surface.
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Ohm’s law for the electric circuit has the point form

J = σE (40a)

and we see that the magnetic flux density will be the analog of the current density,

B = µH (40b)

To find the total current, we must integrate:

I =
∫

S
J · dS (41a)

A corresponding operation is necessary to determine the total magnetic flux flowing
through the cross section of a magnetic circuit:

� =
∫

S
B · dS (41b)

We then defined resistance as the ratio of potential difference and current, or

V = IR (42a)

and we shall now define reluctance as the ratio of the magnetomotive force to the
total flux; thus

Vm = �� (42b)

where reluctance is measured in ampere-turns per weber (A · t/Wb). In resistors that
are made of a linear isotropic homogeneous material of conductivity σ and have a
uniform cross section of area S and length d, the total resistance is

R = d

σS
(43a)

If we are fortunate enough to have such a linear isotropic homogeneous magnetic
material of length d and uniform cross section S, then the total reluctance is

� = d

µS
(43b)

The only such material to which we shall commonly apply this relationship is air.
Finally, let us consider the analog of the source voltage in an electric circuit. We

know that the closed line integral of E is zero,
∮

E · dL = 0

In other words, Kirchhoff’s voltage law states that the rise in potential through the
source is exactly equal to the fall in potential through the load. The expression for
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magnetic phenomena takes on a slightly different form,∮
H · dL = Itotal

for the closed line integral is not zero. Because the total current linked by the path
is usually obtained by allowing a current I to flow through an N -turn coil, we may
express this result as

∮
H · dL = NI (44)

In an electric circuit, the voltage source is a part of the closed path; in the magnetic
circuit, the current-carrying coil will surround or link the magnetic circuit. In tracing
a magnetic circuit, we will not be able to identify a pair of terminals at which the
magnetomotive force is applied. The analogy is closer here to a pair of coupled circuits
in which induced voltages exist (and in which we will see in Chapter 9 that the closed
line integral of E is also not zero).

Let us try out some of these ideas on a simple magnetic circuit. In order to avoid
the complications of ferromagnetic materials at this time, we will assume that we
have an air-core toroid with 500 turns, a cross-sectional area of 6 cm2, a mean radius
of 15 cm, and a coil current of 4 A. As we already know, the magnetic field is confined
to the interior of the toroid, and if we consider the closed path of our magnetic circuit
along the mean radius, we link 2000 A · t,

Vm, source = 2000 A · t

Although the field in the toroid is not quite uniform, we may assume that it is, for all
practical purposes, and calculate the total reluctance of the circuit as

� = d

µS
= 2π (0.15)

4π10−7 × 6 × 10−4
= 1.25 × 109 A·t/Wb

Thus

� = Vm,S

� = 2000

1.25 × 109
= 1.6 × 10−6 Wb

This value of the total flux is in error by less than 1
4 percent, in comparison with the

value obtained when the exact distribution of flux over the cross section is used.
Hence

B = �

S
= 1.6 × 10−6

6 × 10−4
= 2.67 × 10−3 T

and finally,

H = B

µ
= 2.67 × 10−3

4π10−7
= 2120 A·t/m

As a check, we may apply Ampère’s circuital law directly in this symmetrical problem,

Hφ2πr = NI
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and obtain

Hφ = NI

2πr
= 500 × 4

6.28 × 0.15
= 2120 A/m

at the mean radius.
Our magnetic circuit in this example does not give us any opportunity to find the

mmf across different elements in the circuit, for there is only one type of material.
The analogous electric circuit is, of course, a single source and a single resistor. We
could make it look just as long as the preceding analysis, however, if we found the
current density, the electric field intensity, the total current, the resistance, and the
source voltage.

More interesting and more practical problems arise when ferromagnetic materials
are present in the circuit. Let us begin by considering the relationship between B and
H in such a material. We may assume that we are establishing a curve of B versus
H for a sample of ferromagnetic material which is completely demagnetized; both
B and H are zero. As we begin to apply an mmf, the flux density also rises, but not
linearly, as the experimental data of Figure 8.11 show near the origin. After H reaches
a value of about 100 A · t/m, the flux density rises more slowly and begins to saturate
when H is several hundred A · t/m. Having reached partial saturation, let us now turn
to Figure 8.12, where we may continue our experiment at point x by reducing H. As
we do so, the effects of hysteresis begin to show, and we do not retrace our original
curve. Even after H is zero, B = Br, the remnant flux density. As H is reversed,
then brought back to zero, and the complete cycle traced several times, the hysteresis
loop of Figure 8.12 is obtained. The mmf required to reduce the flux density to zero
is identified as Hc, the coercive “force.” For smaller maximum values of H , smaller

Figure 8.11 Magnetization curve of a sample of silicon sheet
steel.
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Figure 8.12 A hysteresis loop for silicon steel. The
coercive force Hc and remnant flux density Br are
indicated.

hysteresis loops are obtained, and the locus of the tips is about the same as the virgin
magnetization curve of Figure 8.11.

EXAMPLE 8.7

Let us use the magnetization curve for silicon steel to solve a magnetic circuit problem
that is slightly different from our previous example. We use a steel core in the toroid,
except for an air gap of 2 mm. Magnetic circuits with air gaps occur because gaps
are deliberately introduced in some devices, such as inductors, which must carry
large direct currents, because they are unavoidable in other devices such as rotating
machines, or because of unavoidable problems in assembly. There are still 500 turns
about the toroid, and we ask what current is required to establish a flux density of 1 T
everywhere in the core.

Solution. This magnetic circuit is analogous to an electric circuit containing a voltage
source and two resistors, one of which is nonlinear. Because we are given the “current,”
it is easy to find the “voltage” across each series element, and hence the total “emf.”
In the air gap,

�air = dair

µS
= 2 × 10−3

4π10−7 × 6 × 10−4
= 2.65 × 106 A·t/Wb

Knowing the total flux,

� = BS = 1(6 × 10−4) = 6 × 10−4 Wb
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which is the same in both steel and air, we may find the mmf required for the gap,

Vm,air = (6 × 10−4)(2.65 × 106) = 1590 A·t
Referring to Figure 8.11, a magnetic field strength of 200 A · t/m is required to produce
a flux density of 1 T in the steel. Thus,

Hsteel = 200 A·t
Vm,steel = Hsteeldsteel = 200 × 0.30π

= 188 A·t
The total mmf is therefore 1778 A·t, and a coil current of 3.56 A is required.

We have made several approximations in obtaining this answer. We have already
mentioned the lack of a completely uniform cross section, or cylindrical symmetry;
the path of every flux line is not of the same length. The choice of a “mean” path
length can help compensate for this error in problems in which it may be more
important than it is in our example. Fringing flux in the air gap is another source of
error, and formulas are available by which we may calculate an effective length and
cross-sectional area for the gap which will yield more accurate results. There is also
a leakage flux between the turns of wire, and in devices containing coils concentrated
on one section of the core, a few flux lines bridge the interior of the toroid. Fringing
and leakage are problems that seldom arise in the electric circuit because the ratio
of the conductivities of air and the conductive or resistive materials used is so high.
In contrast, the magnetization curve for silicon steel shows that the ratio of H to B
in the steel is about 200 up to the “knee” of the magnetization curve; this compares
with a ratio in air of about 800, 000. Thus, although flux prefers steel to air by the
commanding ratio of 4000 to 1, this is not very close to the ratio of conductivities of,
say, 1015 for a good conductor and a fair insulator.

EXAMPLE 8.8

As a last example, let us consider the reverse problem. Given a coil current of 4 A in
the magnetic circuit of Example 8.7, what will the flux density be?

Solution. First let us try to linearize the magnetization curve by a straight line from
the origin to B = 1, H = 200. We then have B = H/200 in steel and B = µ0 H in air.
The two reluctances are found to be 0.314×106 for the steel path and 2.65×106 for the
air gap, or 2.96×106A · t/Wb total. Since Vm is 2000 A · t, the flux is 6.76×10−4 Wb,
and B = 1.13 T. A more accurate solution may be obtained by assuming several values
of B and calculating the necessary mmf. Plotting the results enables us to determine
the true value of B by interpolation. With this method we obtain B = 1.10 T. The good
accuracy of the linear model results from the fact that the reluctance of the air gap
in a magnetic circuit is often much greater than the reluctance of the ferromagnetic
portion of the circuit. A relatively poor approximation for the iron or steel can thus
be tolerated.
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Figure 8.13 See Problem D8.9.

D8.9. Given the magnetic circuit of Figure 8.13, assume B = 0.6 T at the
midpoint of the left leg and find: (a) Vm,air; (b) Vm,steel; (c) the current required
in a 1300-turn coil linking the left leg.

Ans. 3980 A · t; 72 A · t; 3.12 A

D8.10. The magnetization curve for material X under normal operating con-
ditions may be approximated by the expression B = (H/160)(0.25 + e−H/320),
where H is in A/m and B is in T. If a magnetic circuit contains a 12 cm length
of material X , as well as a 0.25-mm air gap, assume a uniform cross section
of 2.5 cm2 and find the total mmf required to produce a flux of (a) 10 µWb;
(b) 100 µWb.

Ans. 8.58 A · t; 86.7 A · t

8.9 POTENTIAL ENERGY AND FORCES
ON MAGNETIC MATERIALS

In the electrostatic field we first introduced the point charge and the experimental law
of force between point charges. After defining electric field intensity, electric flux
density, and electric potential, we were able to find an expression for the energy in an
electrostatic field by establishing the work necessary to bring the prerequisite point
charges from infinity to their final resting places. The general expression for energy is

WE = 1

2

∫

vol
D · E dν (45)

where a linear relationship between D and E is assumed.
This is not as easily done for the steady magnetic field. It would seem that we

might assume two simple sources, perhaps two current sheets, find the force on one



262 ENGINEERING ELECTROMAGNETICS

due to the other, move the sheet a differential distance against this force, and equate
the necessary work to the change in energy. If we did, we would be wrong, because
Faraday’s law (coming up in Chapter 9) shows that there will be a voltage induced
in the moving current sheet against which the current must be maintained. Whatever
source is supplying the current sheet turns out to receive half the energy we are putting
into the circuit by moving it.

In other words, energy density in the magnetic field may be determined more
easily after time-varying fields are discussed. We will develop the appropriate expres-
sion in discussing Poynting’s theorem in Chapter 11.

An alternate approach would be possible at this time, however, for we might
define a magnetostatic field based on assumed magnetic poles (or “magnetic
charges”). Using the scalar magnetic potential, we could then develop an energy
expression by methods similar to those used in obtaining the electrostatic energy
relationship. These new magnetostatic quantities we would have to introduce would
be too great a price to pay for one simple result, and we will therefore merely present
the result at this time and show that the same expression arises in the Poynting the-
orem later. The total energy stored in a steady magnetic field in which B is linearly
related to H is

WH = 1

2

∫

vol
B · H dν (46)

Letting B = µH, we have the equivalent formulations

WH = 1

2

∫

vol
µH 2dν (47)

or

WH = 1

2

∫

vol

B2

µ
dν (48)

It is again convenient to think of this energy as being distributed throughout the
volume with an energy density of 1

2 B · H J/m3, although we have no mathematical
justification for such a statement.

In spite of the fact that these results are valid only for linear media, we may use
them to calculate the forces on nonlinear magnetic materials if we focus our attention
on the linear media (usually air) which may surround them. For example, suppose
that we have a long solenoid with a silicon-steel core. A coil containing n turns/m
with a current I surrounds it. The magnetic field intensity in the core is therefore
nI A · t/m, and the magnetic flux density can be obtained from the magnetization
curve for silicon steel. Let us call this value Bst. Suppose that the core is composed of
two semi-infinite cylinders2 that are just touching. We now apply a mechanical force
to separate these two sections of the core while keeping the flux density constant. We
apply a force F over a distance dL , thus doing work F dL . Faraday’s law does not

2 A semi-infinite cylinder is a cylinder of infinite length having one end located in finite space.
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apply here, for the fields in the core have not changed, and we can therefore use the
principle of virtual work to determine that the work we have done in moving one core
appears as stored energy in the air gap we have created. By (48), this increase is

dWH = F dL = 1

2

B2
st

µ0
S dL

where S is the core cross-sectional area. Thus

F = B2
stS

2µ0

If, for example, the magnetic field intensity is sufficient to produce saturation in the
steel, approximately 1.4 T, the force is

F = 7.80 × 105S N

or about 113 lb f /in2.

D8.11. (a) What force is being exerted on the pole faces of the circuit de-
scribed in Problem D8.9 and Figure 8.13? (b) Is the force trying to open or close
the air gap?

Ans. 1194 N; as Wilhelm Eduard Weber would put it, “schliessen”

8.10 INDUCTANCE AND MUTUAL
INDUCTANCE

Inductance is the last of the three familiar parameters from circuit theory that we are
defining in more general terms. Resistance was defined in Chapter 5 as the ratio of
the potential difference between two equipotential surfaces of a conducting material
to the total current crossing either equipotential surface. The resistance is a function
of conductor geometry and conductivity only. Capacitance was defined in the same
chapter as the ratio of the total charge on either of two equipotential conducting
surfaces to the potential difference between the surfaces. Capacitance is a function
only of the geometry of the two conducting surfaces and the permittivity of the
dielectric medium between or surrounding them.

As a prelude to defining inductance, we first need to introduce the concept of flux
linkage. Let us consider a toroid of N turns in which a current I produces a total flux
�. We assume first that this flux links or encircles each of the N turns, and we also
see that each of the N turns links the total flux �. The flux linkage N� is defined as
the product of the number of turns N and the flux � linking each of them.3 For a coil
having a single turn, the flux linkage is equal to the total flux.

3 The symbol λ is commonly used for flux linkages. We will only occasionally use this concept,
however, and we will continue to write it as N�.
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We now define inductance (or self-inductance) as the ratio of the total flux link-
ages to the current which they link,

L = N�

I
(49)

The current I flowing in the N -turn coil produces the total flux � and N� flux
linkages, where we assume for the moment that the flux � links each turn. This
definition is applicable only to magnetic media which are linear, so that the flux is
proportional to the current. If ferromagnetic materials are present, there is no single
definition of inductance which is useful in all cases, and we shall restrict our attention
to linear materials.

The unit of inductance is the henry (H), equivalent to one weber-turn per ampere.
Let us apply (49) in a straightforward way to calculate the inductance per meter

length of a coaxial cable of inner radius a and outer radius b. We may take the
expression for total flux developed as Eq. (42) in Chapter 7,

� = µ0 Id

2π
ln

b

a
and obtain the inductance rapidly for a length d,

L = µ0d

2π
ln

b

a
H

or, on a per-meter basis,

L = µ0

2π
ln

b

a
H/m (50)

In this case, N = 1 turn, and all the flux links all the current.
In the problem of a toroidal coil of N turns and a current I , as shown in Fig-

ure 7.12b, we have

Bφ = µ0 NI

2πρ

If the dimensions of the cross section are small compared with the mean radius of the
toroid ρ0, then the total flux is

� = µ0NIS

2πρ0

where S is the cross-sectional area. Multiplying the total flux by N , we have the flux
linkages, and dividing by I , we have the inductance

L = µ0 N 2S

2πρ0
(51)

Once again we have assumed that all the flux links all the turns, and this is a
good assumption for a toroidal coil of many turns packed closely together. Suppose,
however, that our toroid has an appreciable spacing between turns, a short part of
which might look like Figure 8.14. The flux linkages are no longer the product of the
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Figure 8.14 A portion of a coil showing partial flux
linkages. The total flux linkages are obtained by adding
the fluxes linking each turn.

flux at the mean radius times the total number of turns. In order to obtain the total
flux linkages we must look at the coil on a turn-by-turn basis.

(N�)total = �1 + �2 + · · · + �i + · · · + �N

=
N∑

i=1

�i

where �i is the flux linking the i th turn. Rather than doing this, we usually rely on
experience and empirical quantities called winding factors and pitch factors to adjust
the basic formula to apply to the real physical world.

An equivalent definition for inductance may be made using an energy point
of view,

L = 2WH

I 2
(52)

where I is the total current flowing in the closed path and WH is the energy in the
magnetic field produced by the current. After using (52) to obtain several other general
expressions for inductance, we will show that it is equivalent to (49). We first express
the potential energy WH in terms of the magnetic fields,

L =
∫

vol B · H dν

I 2
(53)

and then replace B by ∇ × A,

L = 1

I 2

∫

vol
H · (∇ × A)dν
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The vector identity

∇ · (A × H) ≡ H · (∇ × A) − A · (∇ × H) (54)

may be proved by expansion in rectangular coordinates. The inductance is then

L = 1

I 2

[∫

vol
∇ · (A × H) dν +

∫

vol
A · (∇ × H) dν

]
(55)

After applying the divergence theorem to the first integral and letting ∇ × H = J in
the second integral, we have

L = 1

I 2

[∮

S
(A × H) · dS +

∫

vol
A · J dν

]

The surface integral is zero, as the surface encloses the volume containing all the
magnetic energy, and this requires that A and H be zero on the bounding surface. The
inductance may therefore be written as

L = 1

I 2

∫

vol
A · J dν (56)

Equation (56) expresses the inductance in terms of an integral of the values of
A and J at every point. Because current density exists only within the conductor, the
integrand is zero at all points outside the conductor, and the vector magnetic potential
need not be determined there. The vector potential is that which arises from the current
J, and any other current source contributing a vector potential field in the region of
the original current density is to be ignored for the present. Later we will see that this
leads to a mutual inductance.

The vector magnetic potential A due to J is given by Eq. (51), Chapter 7,

A =
∫

vol

µJ
4πR

dν

and the inductance may therefore be expressed more basically as a rather formidable
double volume integral,

L = 1

I 2

∫

vol

(∫

vol

µJ
4πR

dν

)
· J dν (57)

A slightly simpler integral expression is obtained by restricting our attention to
current filaments of small cross section for which J dν may be replaced by I dL and
the volume integral by a closed line integral along the axis of the filament,

L = 1

I 2

∮ (∮
µI dL
4πR

)
· I dL

= µ

4π

∮ (∮
dL
R

)
· dL

(58)

Our only present interest in Eqs. (57) and (58) lies in their implication that the
inductance is a function of the distribution of the current in space or the geometry of
the conductor configuration.

To obtain our original definition of inductance (49), let us hypothesize a uniform
current distribution in a filamentary conductor of small cross section so that J dν
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in (56) becomes I dL,

L = 1

I

∮
A · dL (59)

For a small cross section, dL may be taken along the center of the filament. We now
apply Stokes’ theorem and obtain

L = 1

I

∫

S
(∇ × A) · dS

or

L = 1

I

∫

S
B · dS

or

L = �

I
(60)

Retracing the steps by which (60) is obtained, we should see that the flux � is
that portion of the total flux that passes through any and every open surface whose
perimeter is the filamentary current path.

If we now let the filament make N identical turns about the total flux, an idealiza-
tion that may be closely realized in some types of inductors, the closed line integral
must consist of N laps about this common path, and (60) becomes

L = N�

I
(61)

The flux � is now the flux crossing any surface whose perimeter is the path occupied
by any one of the N turns. The inductance of an N -turn coil may still be obtained
from (60), however, if we realize that the flux is that which crosses the complicated
surface4 whose perimeter consists of all N turns.

Use of any of the inductance expressions for a true filamentary conductor (having
zero radius) leads to an infinite value of inductance, regardless of the configuration
of the filament. Near the conductor, Ampère’s circuital law shows that the magnetic
field intensity varies inversely with the distance from the conductor, and a simple
integration soon shows that an infinite amount of energy and an infinite amount of
flux are contained within any finite cylinder about the filament. This difficulty is
eliminated by specifying a small but finite filamentary radius.

The interior of any conductor also contains magnetic flux, and this flux links a
variable fraction of the total current, depending on its location. These flux linkages
lead to an internal inductance, which must be combined with the external inductance
to obtain the total inductance. The internal inductance of a long, straight wire of
circular cross section, radius a, and uniform current distribution is

La,int = µ

8π
H/m (62)

a result requested in Problem 8.43 at the end of this chapter.

4 Somewhat like a spiral ramp.
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In Chapter 11, we will see that the current distribution in a conductor at high
frequencies tends to be concentrated near the surface. The internal flux is reduced, and
it is usually sufficient to consider only the external inductance. At lower frequencies,
however, internal inductance may become an appreciable part of the total inductance.

We conclude by defining the mutual inductance between circuits 1 and 2, M12,
in terms of mutual flux linkages,

M12 = N2�12

I1
(63)

where �12 signifies the flux produced by I1 which links the path of the filamentary
current I2, and N2 is the number of turns in circuit 2. The mutual inductance, there-
fore, depends on the magnetic interaction between two currents. With either current
alone, the total energy stored in the magnetic field can be found in terms of a single
inductance, or self-inductance; with both currents having nonzero values, the total
energy is a function of the two self-inductances and the mutual inductance. In terms
of a mutual energy, it can be shown that (63) is equivalent to

M12 = 1

I1 I2

∫

vol
(B1 · H2)dν (64)

or

M12 = 1

I1 I2

∫

vol
(µH1 · H2)dν (65)

where B1 is the field resulting from I1 (with I2 = 0) and H2 is the field arising from
I2 (with I1 = 0). Interchange of the subscripts does not change the right-hand side of
(65), and therefore

M12 = M21 (66)

Mutual inductance is also measured in henrys, and we rely on the context to allow
us to differentiate it from magnetization, also represented by M .

EXAMPLE 8.9

Calculate the self-inductances of and the mutual inductances between two coaxial
solenoids of radius R1 and R2, R2 > R1, carrying currents I1 and I2 with n1 and
n2 turns/m, respectively.

Solution. We first attack the mutual inductances. From Eq. (15), Chapter 7, we let
n1 = N/d , and obtain

H1 = n1 I1az (0 < ρ < R1)

= 0 (ρ > R1)

and

H2 = n2 I2az (0 < ρ < R2)

= 0 (ρ > R2)
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Thus, for this uniform field

�12 = µ0n1 I1πR2
1

and

M12 = µ0n1n2πR2
1

Similarly,

�21 = µ0n2 I2πR2
1

M21 = µ0n1n2πR2
1 = M12

If n1 = 50 turns/cm, n2 = 80 turns/cm, R1 = 2 cm, and R2 = 3 cm, then

M12 = M21 = 4π × 10−7(5000)(8000)π (0.022) = 63.2 mH/m

The self-inductances are easily found. The flux produced in coil 1 by I1 is

�11 = µ0n1 I1πR2
1

and thus

L1 = µ0n2
1S1d H

The inductance per unit length is therefore

L1 = µ0n2
1S1 H/m

or

L1 = 39.5 mH/m

Similarly,

L2 = µ0n2
2S2 = 22.7 mH/m

We see, therefore, that there are many methods available for the calculation of
self-inductance and mutual inductance. Unfortunately, even problems possessing a
high degree of symmetry present very challenging integrals for evaluation, and only
a few problems are available for us to try our skill on.

Inductance will be discussed in circuit terms in Chapter 10.

D8.12. Calculate the self-inductance of: (a) 3.5 m of coaxial cable with a =
0.8 mm and b = 4 mm, filled with a material for which µr = 50; (b) a toroidal
coil of 500 turns, wound on a fiberglass form having a 2.5 × 2.5 cm square
cross section and an inner radius of 2 cm; (c) a solenoid having 500 turns about
a cylindrical core of 2 cm radius in which µr = 50 for 0 < ρ < 0.5 cm and
µr = 1 for 0.5 < ρ < 2 cm; the length of the solenoid is 50 cm.

Ans. 56.3 µH; 1.01 mH; 3.2 mH
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D8.13. A solenoid is 50 cm long, 2 cm in diameter, and contains 1500 turns.
The cylindrical core has a diameter of 2 cm and a relative permeability of 75.
This coil is coaxial with a second solenoid, also 50 cm long, but with a 3 cm
diameter and 1200 turns. Calculate: (a) L for the inner solenoid; (b) L for the
outer solenoid; (c) M between the two solenoids.

Ans. 133.2 mH; 192 mH; 106.6 mH
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CHAPTER 8 PROBLEMS
8.1 A point charge, Q = −0.3 µC and m = 3 × 10−16 kg, is moving through

the field E = 30az V/m. Use Eq. (1) and Newton’s laws to develop the
appropriate differential equations and solve them, subject to the initial
conditions at t = 0, v = 3 × 105ax m/s at the origin. At t = 3 µs, find (a) the
position P(x, y, z) of the charge; (b) the velocity v; (c) the kinetic energy of
the charge.

8.2 Compare the magnitudes of the electric and magnetic forces on an electron
that has attained a velocity of 107 m/s. Assume an electric field intensity of
105 V/m, and a magnetic flux density associated with that of the Earth’s
magnetic field in temperate latitudes, 0.5 gauss.

8.3 A point charge for which Q = 2 × 10−16 C and m = 5 × 10−26 kg is moving
in the combined fields E = 100ax − 200ay + 300az V/m and B = −3ax +
2ay − az mT. If the charge velocity at t = 0 is v(0) = (2ax − 3ay −
4az)105 m/s (a) give the unit vector showing the direction in which the
charge is accelerating at t = 0; (b) find the kinetic energy of the charge at
t = 0.

8.4 Show that a charged particle in a uniform magnetic field describes a circular
orbit with an orbital period that is independent of the radius. Find the
relationship between the angular velocity and magnetic flux density for an
electron (the cyclotron frequency).

8.5 A rectangular loop of wire in free space joins point A(1, 0, 1) to point
B(3, 0, 1) to point C(3, 0, 4) to point D(1, 0, 4) to point A. The wire carries a
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current of 6 mA, flowing in the az direction from B to C . A filamentary
current of 15 A flows along the entire z axis in the az direction. (a) Find F on
side BC . (b) Find F on side AB. (c) Find Ftotal on the loop.

8.6 Show that the differential work in moving a current element I dL through a
distance dl in a magetic field B is the negative of that done in moving the
element I dl through a distance dL in the same field.

8.7 Uniform current sheets are located in free space as follows: 8az A/m at
y = 0, −4az A/m at y = 1, and −4az A/m at y = −1. Find the vector force
per meter length exerted on a current filament carrying 7 mA in the aL

direction if the filament is located at (a) x = 0, y = 0.5, and aL = az ;
(b) y = 0.5, z = 0, and aL = ax ; (c) x = 0, y = 1.5, and aL = az .

8.8 Two conducting strips, having infinite length in the z direction, lie in the xz
plane. One occupies the region d/2 < x < b + d/2 and carries surface
current density K = K0az ; the other is situated at −(b + d/2) < x < −d/2
and carries surface current density −K0az . (a) Find the force per unit length
in z that tends to separate the two strips. (b) Let b approach zero while
maintaining constant current, I = K0b, and show that the force per unit
length approaches µ0 I 2/(2πd) N/m.

8.9 A current of −100az A/m flows on the conducting cylinder ρ = 5 mm, and
+500az A/m is present on the conducting cylinder ρ = 1 mm. Find the
magnitude of the total force per meter length that is acting to split the outer
cylinder apart along its length.

8.10 A planar transmission line consists of two conducting planes of width b
separated d m in air, carrying equal and opposite currents of I A. If b � d,
find the force of repulsion per meter of length between the two conductors.

8.11 (a) Use Eq. (14), Section 8.3, to show that the force of attraction per unit
length between two filamentary conductors in free space with currents I1az

at x = 0, y = d/2, and I2az at x = 0, y = −d/2, is µ0 I1 I2/(2πd). (b) Show
how a simpler method can be used to check your result.

8.12 Two circular wire rings are parallel to each other, share the same axis, are of
radius a, and are separated by distance d, where d << a. Each ring carries
current I . Find the approximate force of attraction and indicate the relative
orientations of the currents.

8.13 A current of 6 A flows from M(2, 0, 5) to N (5, 0, 5) in a straight, solid
conductor in free space. An infinite current filament lies along the z axis
and carries 50 A in the az direction. Compute the vector torque on the wire
segment using an origin at: (a) (0, 0, 5); (b) (0, 0, 0); (c) (3, 0, 0).

8.14 A solenoid is 25 cm long, 3 cm in diameter, and carries 4 A dc in its 400
turns. Its axis is perpendicular to a uniform magnetic field of 0.8 Wb/m2 in
air. Using an origin at the center of the solenoid, calculate the torque acting
on it.
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8.15 A solid conducting filament extends from x = −b to x = b along the line
y = 2, z = 0. This filament carries a current of 3 A in the ax direction. An
infinite filament on the z axis carries 5 A in the az direction. Obtain an
expression for the torque exerted on the finite conductor about an origin
located at (0, 2, 0).

8.16 Assume that an electron is describing a circular orbit of radius a about a
positively charged nucleus. (a) By selecting an appropriate current and area,
show that the equivalent orbital dipole moment is ea2ω/2, where ω is the
electron’s angular velocity. (b) Show that the torque produced by a magnetic
field parallel to the plane of the orbit is ea2ωB/2. (c) By equating the
Coulomb and centrifugal forces, show that ω is (4πε0mea3/e2)−1/2, where
me is the electron mass. (d) Find values for the angular velocity, torque,
and the orbital magnetic moment for a hydrogen atom, where a is about
6 × 10−11 m; let B = 0.5 T.

8.17 The hydrogen atom described in Problem 8.16 is now subjected to a
magnetic field having the same direction as that of the atom. Show that the
forces caused by B result in a decrease of the angular velocity by eB/(2me)
and a decrease in the orbital moment by e2a2 B/(4me). What are these
decreases for the hydrogen atom in parts per million for an external magnetic
flux density of 0.5 T?

8.18 Calculate the vector torque on the square loop shown in Figure 8.15 about
an origin at A in the field B, given (a) A(0, 0, 0) and B = 100ay mT;
(b) A(0, 0, 0) and B = 200ax + 100ay mT; (c) A(1, 2, 3) and B = 200ax +
100ay − 300az mT; (d) A(1, 2, 3) and B = 200ax + 100ay − 300az mT
for x ≥ 2 and B = 0 elsewhere.

8.19 Given a material for which χm = 3.1 and within which B = 0.4yaz T, find
(a)H; (b) µ; (c) µr ; (d) M; (e) J; ( f ) JB ; (g) JT .

8.20 Find H in a material where (a) µr = 4.2, there are 2.7 × 1029 atoms/m3, and
each atom has a dipole moment of 2.6 × 10−30ay A · m2; (b) M = 270az A/m
and µ = 2µ H/m; (c) χm = 0.7 and B = 2az T. (d) Find M in a material
where bound surface current densities of 12az A/m and −9az A/m exist at
ρ = 0.3 m and 0.4 m, respectively.

8.21 Find the magnitude of the magnetization in a material for which (a) the
magnetic flux density is 0.02 Wb/m2; (b) the magnetic field intensity is
1200 A/m and the relative permeability is 1.005; (c) there are 7.2 × 1028

atoms per cubic meter, each having a dipole moment of 4 × 10−30 A·m2

in the same direction, and the magnetic susceptibility is 0.003.

8.22 Under some conditions, it is possible to approximate the effects of
ferromagnetic materials by assuming linearity in the relationship of B and
H. Let µr = 1000 for a certain material of which a cylindrical wire of
radius 1 mm is made. If I = 1 A and the current distribution is uniform,
find (a) B, (b) H, (c) M, (d) J, and (e) JB within the wire.
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Figure 8.15 See Problem 8.18.

8.23 Calculate values for Hφ , Bφ , and Mφ at ρ = c for a coaxial cable with
a = 2.5 mm and b = 6 mm if it carries a current I = 12 A in the center
conductor, and µ = 3µH/m for 2.5 mm < ρ < 3.5 mm, µ = 5 µH/m for
3.5 mm < ρ < 4.5 mm, and µ = 10 µH/m for 4.5 mm < ρ < 6 mm. Use
c =: (a) 3 mm; (b) 4 mm; (c) 5 mm.

8.24 Two current sheets, K0ay A/m at z = 0 and −K0ay A/m at z = d, are
separated by an inhomogeneous material for which µr = az + 1, where a is
a constant. (a) Find expressions for H and B in the material. (b) Find the total
flux that crosses a 1m2 area on the yz plane.

8.25 A conducting filament at z = 0 carries 12 A in the az direction. Let µr = 1
for ρ < 1 cm, µr = 6 for 1 < ρ < 2 cm, and µr = 1 for ρ > 2 cm. Find:
(a) H everywhere; (b) B everywhere.

8.26 A long solenoid has a radius of 3 cm, 5000 turns/m, and carries current
I = 0.25 A. The region 0 < ρ < a within the solenoid has µr = 5, whereas
µr = 1 for a < ρ < 3 cm. Determine a so that (a) a total flux of 10 µWb is
present; (b) the flux is equally divided between the regions 0 < ρ < a and
a < ρ < 3 cm.

8.27 Let µr1 = 2 in region 1, defined by 2x + 3y − 4z > 1, while µr2 = 5
in region 2 where 2x + 3y − 4z < 1. In region 1, H1 = 50ax − 30ay +
20az A/m. Find (a) HN1; (b) Ht1; (c) Ht2; (d) HN2; (e) θ1, the angle between
H1 and aN21; ( f ) θ2, the angle between H2 and aN21.

8.28 For values of B below the knee on the magnetization curve for silicon steel,
approximate the curve by a straight line with µ = 5 mH/m. The core shown
in Figure 8.16 has areas of 1.6 cm2 and lengths of 10 cm in each outer leg,
and an area of 2.5 cm2 and a length of 3 cm in the central leg. A coil of
1200 turns carrying 12 mA is placed around the central leg. Find B in the
(a) center leg; (b) center leg if a 0.3 mm air gap is present in the center leg.
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Figure 8.16 See Problem 8.28.

8.29 In Problem 8.28, the linear approximation suggested in the statement of the
problem leads to flux density of 0.666 T in the central leg. Using this value
of B and the magnetization curve for silicon steel, what current is required in
the 1200-turn coil?

8.30 A rectangular core has fixed permeability µr >> 1, a square cross section of
dimensions a × a, and has centerline dimensions around its perimeter of b
and d . Coils 1 and 2, having turn numbers N1 and N2, are wound on the core.
Consider a selected core cross-sectional plane as lying within the xy plane,
such that the surface is defined by 0 < x < a, 0 < y < a. (a) With current I1

in coil 1, use Ampere’s circuital law to find the magnetic flux density as a
function of position over the core cross-section. (b) Integrate your result of
part (a) to determine the total magnetic flux within the core. (c) Find the
self-inductance of coil 1. (d) Find the mutual inductance between coils 1
and 2.

8.31 A toroid is constructed of a magnetic material having a cross-sectional area
of 2.5 cm2 and an effective length of 8 cm. There is also a short air gap of
0.25 mm length and an effective area of 2.8 cm2. An mmf of 200 A · t is
applied to the magnetic circuit. Calculate the total flux in the toroid if the
magnetic material: (a) is assumed to have infinite permeability; (b) is
assumed to be linear with µr = 1000; (c) is silicon steel.

8.32 (a) Find an expression for the magnetic energy stored per unit length in a
coaxial transmission line consisting of conducting sleeves of negligible
thickness, having radii a and b. A medium of relative permeability µr fills
the region between conductors. Assume current I flows in both conductors in
opposite directions. (b) Obtain the inductance, L , per unit length of line by
equating the energy to (1/2)L I 2.

8.33 A toroidal core has a square cross section, 2.5 cm < ρ < 3.5 cm, −0.5 cm <

z < 0.5 cm. The upper half of the toroid, 0 < z < 0.5 cm, is constructed of a
linear material for which µr = 10, while the lower half, −0.5 cm < z < 0,
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Figure 8.17 See Problem 8.35.

has µr = 20. An mmf of 150 A · t establishes a flux in the aφ direction.
For z > 0, find: (a) Hφ(ρ); (b) Bφ(ρ); (c) �z>0. (d) Repeat for z > 0.
(e) Find �total.

8.34 Determine the energy stored per unit length in the internal magnetic field of
an infinitely long, straight wire of radius a, carrying uniform current I .

8.35 The cones θ = 21◦ and θ = 159◦ are conducting surfaces and carry total
currents of 40 A, as shown in Figure 8.17. The currents return on a spherical
conducting surface of 0.25 m radius. (a) Find H in the region 0 < r < 0.25,
21◦ < θ < 159◦, 0 < φ < 2π . (b) How much energy is stored in this region?

8.36 The dimensions of the outer conductor of a coaxial cable are b and c, where
c > b. Assuming µ = µ0, find the magnetic energy stored per unit length
in the region b < ρ < c for a uniformly distributed total current I flowing
in opposite directions in the inner and outer conductors.

8.37 Find the inductance of the cone-sphere configuration described in
Problem 8.35 and Figure 8.17. The inductance is that offered at the origin
between the vertices of the cone.

8.38 A toroidal core has a rectangular cross section defined by the surfaces
ρ = 2 cm, ρ = 3 cm, z = 4 cm, and z = 4.5 cm. The core material has a
relative permeability of 80. If the core is wound with a coil containing 8000
turns of wire, find its inductance.

8.39 Conducting planes in air at z = 0 and z = d carry surface currents of
±K0ax A/m. (a) Find the energy stored in the magnetic field per unit length
(0 < x < 1) in a width w(0 < y < w). (b) Calculate the inductance per unit
length of this transmission line from WH = 1

2 LI 2, where I is the total current
in a width w in either conductor. (c) Calculate the total flux passing through
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the rectangle 0 < x < 1, 0 < z < d, in the plane y = 0, and from this result
again find the inductance per unit length.

8.40 A coaxial cable has conductor radii a and b, where a < b. Material of
permeability µr �= 1 exists in the region a < ρ < c, whereas the region
c < ρ < b is air filled. Find an expression for the inductance per unit length.

8.41 A rectangular coil is composed of 150 turns of a filamentary conductor. Find
the mutual inductance in free space between this coil and an infinite straight
filament on the z axis if the four corners of the coil are located at: (a) (0, 1, 0),
(0, 3, 0), (0, 3, 1), and (0, 1, 1); (b) (1, 1, 0), (1, 3, 0), (1, 3, 1), and (1, 1, 1).

8.42 Find the mutual inductance between two filaments forming circular rings of
radii a and �a, where �a 	 a. The field should be determined by
approximate methods. The rings are coplanar and concentric.

8.43 (a) Use energy relationships to show that the internal inductance of a
nonmagnetic cylindrical wire of radius a carrying a uniformly distributed
current I is µ0/(8π ) H/m. (b) Find the internal inductance if the portion of
the conductor for which ρ < c < a is removed.

8.44 Show that the external inductance per unit length of a two-wire transmission
line carrying equal and opposite currents is approximately (µ/π ) ln(d/a)
H/m, where a is the radius of each wire and d is the center-to-center wire
spacing. On what basis is the approximation valid?
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